下面是小编为大家整理的2022年六年级数学必背知识点归纳(完整),供大家参考。
数学是研究数量、结构、变化、空间以及信息等概念的一门学科。下面小编为大家带来六年级数学必背知识点归纳,希望对您有帮助,欢迎参考阅读!
六年级数学必背知识点
1.意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。
2.计算法则:
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零.。
3.倒数:乘积是1的两个数叫做互为倒数。
4.求倒数地方法
①求分数的倒数:交换分子、分母的位置。
②求整数的倒数:整数分之1。
③求带分数的倒数:先化成假分数,再求倒数。
④求小数的倒数:先化成分数再求倒数。
5.乘法解决问题
求一个数的几分之几是多少?(用乘法)
小技巧:已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。
巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。
求甲比乙多(少)几分之几?
多:(甲-乙)÷乙 少:(乙-甲)÷乙
六年级数学重要知识点整理
1.1整数和整除的意义
1.在数物体的时候,用来表示物体个数的数1,2,3,4,5,……,叫做整数
2.在正整数1,2,3,4,5,……,的前面添上“—”号,得到的数—1,—2,—3,—4,—5,……,叫做负整数
3.零和正整数统称为自然数
4.正整数、负整数和零统称为整数
5.整数a除以整数b,如果除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
1.2因数和倍数
1.如果整数a能被整数b整除,a就叫做b倍数,b就叫做a的因数
2.倍数和因数是相互依存的
3.一个数的因数的个数是有限的,其中最小的因数是1,的因数是它本身
4.一个数的倍数的个数是无限的,其中最小的倍数是它本身
1.3能被2,5整除的数
1.个位数字是0,2,4,6,8的数都能被2整除
2.整数可以分成奇数和偶数,能被2整除的数叫做偶数,不能被2整除的数叫做奇数
3.在正整数中(除1外),与奇数相邻的两个数是偶数
4.在正整数中,与偶数相邻的两个数是奇数
5.个位数字是0,5的数都能被5整除
6.0是偶数
1.4素数、合数与分解素因数
1.只含有因数1及本身的整数叫做素数或质数
2.除了1及本身还有别的因数,这样的数叫做合数
3.1既不是素数也不是合数
4.奇数和偶数统称为正整数,素数、合数和1统称为正整数
5.每个合数都可以写成几个素数相乘的形式,这几个素数都叫做这个合数的素因数
6.把一个合数用素因数相乘的形式表示出来,叫做分解素因数。
7.通常用什么方法分解素因数:树枝分解法,短除法
1.5公因数与公因数
1.几个数公有的因数,叫做这几个数的公因数,其的一个叫做这几个数的公因数
2.如果两个整数只有公因数1,那么称这两个数互素数
3.把两个数公有的素因数连乘,所得的积就是这两个数的公因数
4.如果两个数中,较小数是较大数的因数,那么这两个数的公因数较小的数
5.如果两个数是互素数,那么这两个数的公因数是1
1.6公倍数与最小公倍数
1.几个数公有的倍数,叫做这几个数的公倍数
2.几个数中最小的公因数,叫做这几个数的最小公倍数
3.求两个数的最小公倍数,只要把它们所有的公有的素因数和他们各自独有的素因数连乘,所得的积就是他们的最小公倍数
4.如果两个数中,较大数是较小数的倍数,那么这两个数的最小公倍数是较大的那个数
5.如果两个数是互素数,那么这两个数的最小公倍数是;两个数的乘积
数学学习方法
数学是思维的体操。且不谈“粒子之小,火箭之速,化工之巧,地球之变,生物之谜,日用之繁”,处处都闪烁应用数学的光芒,高度抽象的纯粹数学,也有其深刻而动人的美丽,堪称艰深难懂而璀璨美丽的艺术。恰如russell所说:“公正而论,数学不仅拥有真理,而且拥有至高无上的美——一种冷峻严肃的美,如同一尊雕塑。”学习数学不仅为了应试解题,更要培养思考问题的逻辑性与严密性,提升思维品质。
学好数学关键在于思考。看似枯燥无味的数学公式,细心品味其内涵与外延,也能触摸到深刻的美丽。数学教材要通读,从最基本的概念出发,一步步推导出美丽的结论,前后勾连,交织成严密知识网络。记忆公式要学会举一反三,注意不同条件下结论的变化,掌握公式的推广和特例,衍生出解决问题的有效模式。
平时做题时,不要满足于记忆解答,要体会每一步的“动机”,才算是完成了思维训练。只记住步骤而不思索动机,不像在看书,倒像在校稿。习题要精做,关键在于赋予每道题应有的思维分量。习题要精选精做,每做一题,要归纳解题的入口和关键步骤,尝试着改变条件和结论,探索一类题的解法。
各类考试有严格的时间、空间限制,要做到快速、准确地解题,必须是采取一定解题策略,在“理解题目→拟定方案→执行方案→回顾”四个环节里节约时间,提高准确率,争取拿到所有应得的分数。
高考数学的题型颇有规律可循,平时多进行定时、定量的解题训练,才能突破弱项,提升速度,找到解题的感觉。