奥数应用题第1篇甲乙两地相距234千米,一只船从甲到乙要9小时,从乙到甲要13小时,问船速和水速各是多少?一只客船的船速为每小时15千米,它从上游甲地到下游乙地共花了8小时,水速是每小时3千米,问客船下面是小编为大家整理的奥数应用题热门,供大家参考。
奥数应用题 第1篇
甲乙两地相距234千米,一只船从甲到乙要9小时,从乙到甲要13小时,问船速和水速各是多少?
一只客船的船速为每小时15千米,它从上游甲地到下游乙地共花了8小时,水速是每小时3千米,问客船从乙地返回甲地要多少小时?
两地相距360千米,一艘游艇在其间驶个来回。顺水而下时要12小时,逆水而上时要18小时,求游艇速度。
客船和货船的速度分别中每小时20千米和16千米。两船从某码头同向顺水而行,货船先行3小时,已知水流速度是每小时4千米,问几小时后客船可以追上货船?
一船每小时行25千米,在大运河中航行140千米,水速是每小时3千米,要几小时?
奥数应用题 第2篇
1. 甲、乙两班进行越野行军比赛,甲班以4.5千米/时的速度走了路程的一半,又以5.5千米/时的速度走完了另一半;
乙班在比赛过程中,一半时间以4.5千米/时的速度行进,另一半时间以5.5千米/时的速度行进。问:甲、乙两班谁将获胜?
解:快速行走的路程越长,所用时间越短。甲班快、慢速行走的路程相同,乙班快速行走的路程比慢速行走的路程长,所以乙班获胜。
2. 轮船从A城到B城需行3天,而从B城到A城需行4天。从A城放一个无动力的木筏,它漂到B城需多少天?
解:轮船顺流用3天,逆流用4天,说明轮船在静水中行4-3=1(天),等于水流3+4=7(天),即船速是流速的7倍。所以轮船顺流行3天的路程等于水流3+3×7=24(天)的路程,即木筏从A城漂到B城需24天。
3. 小红和小强同时从家里出发相向而行。小红每分走52米,小强每分走70米,二人在途中的A处相遇。若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇。小红和小强两人的家相距多少米?
解:因为小红的速度不变,相遇地点不变,所以小红两次从出发到相遇的`时间相同。也就是说,小强第二次比第一次少走4分。由
(70×4)÷(90-70)=14(分)
可知,小强第二次走了14分,推知第一次走了18分,两人的家相距
(52+70)×18=2196(米)。
4. 小明和小军分别从甲、乙两地同时出发,相向而行。若两人按原定速度前进,则4时相遇;
若两人各自都比原定速度多1千米/时,则3时相遇。甲、乙两地相距多少千米?
解:每时多走1千米,两人3时共多走6千米,这6千米相当于两人按原定速度1时走的距离。所以甲、乙两地相距6×4=24(千米)
5. 甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地。求甲原来的速度。
解:因为相遇前后甲、乙两人的速度和不变,相遇后两人合跑一圈用24秒,所以相遇前两人合跑一圈也用24秒,即24秒时两人相遇。
设甲原来每秒跑x米,则相遇后每秒跑(x+2)米。因为甲在相遇前后各跑了24秒,共跑400米,所以有24x+24(x+2)=400,解得x=7又1/3米。
6. 甲、乙两车分别沿公路从A,B两站同时相向而行,已知甲车的速度是乙车的1.5倍,甲、乙两车到达途中C站的时刻分别为5:00和16:00,两车相遇是什么时刻?
解:9∶24。解:甲车到达C站时,乙车还需16-5=11(时)才能到达C站。乙车行11时的路程,两车相遇需11÷(1+1.5)=4.4(时)=4时24分,所以相遇时刻是9∶24。
7. 一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米。坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?
解:快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为11
8.甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒可追上乙;
若乙比甲先跑2秒,则甲跑4秒能追上乙。问:两人每秒各跑多少米?
解:甲乙速度差为10/5=2
速度比为(4+2):4=6:4
所以甲每秒跑6米,乙每秒跑4米。
9.甲、乙、丙三人同时从A向B跑,当甲跑到B时,乙离B还有20米,丙离B还有40米;
当乙跑到B时,丙离B还有24米。问:
(1) A, B相距多少米?
(2)如果丙从A跑到B用24秒,那么甲的速度是多少?
解:解:(1)乙跑最后20米时,丙跑了40-24=16(米),丙的速度
10.在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明。已知公共汽车从始发站每次间隔同样的时间发一辆车,问:相邻两车间隔几分?
解:设车速为a,小光的速度为b,则小明骑车的速度为3b。根据追及问题"追及时间×速度差=追及距离",可列方程
10(a-b)=20(a-3b),
解得a=5b,即车速是小光速度的5倍。小光走10分相当于车行2分,由每隔10分有一辆车超过小光知,每隔8分发一辆车。
奥数应用题 第3篇
按不同的方法分配物品时,经常发生不能均分的情况.如果有物品剩余就叫盈,如果物品不够就叫亏,这就是盈亏问题的含义.
一般地,一批物品分给一定数量的`人,第一种分配方法有多余的物品(盈),第二种分配方法则不足(亏),当两种分配方法相差n个物品时,那就有:
盈数+亏数=人数×n,
这是关于盈亏问题很重要的一个关系式.
解盈亏问题的窍门可以用下面的公式来概括:
(盈+亏)÷两次分得之差=人数或单位数,
(盈-盈)÷两次分得之差=人数或单位数,
(亏-亏)÷两次分得之差=人数或单位数.
解盈亏问题的关键是要找到:什么情况下会盈,盈多少?什么情况下"亏","亏"多少?找到盈亏的根源和几次盈亏结果不同的原因.
另外在解题后,应进行验算.
奥数应用题 第4篇
五个同学有同样多的存款,若每人拿出16元捐给“希望工程”后,五位同学剩下的钱正好等于原来3人的存款数。原来每人存款多少?
把一堆货物平均分给6个小组运,当每个小组都运了68箱时,正好运走了这堆货物的一半。这堆货物一共有多少箱?
老师把一批树苗平均分给四个小队栽,当每队栽了6棵时,发现剩下的树苗正好是原来每队分得的棵数。这批树苗一共有多少棵?
汽车从甲地开往乙地,原计划每小时行40千米,实际每小时多行了10千米,这样比原计划提前2小时到达了乙地。甲、乙两地相距多少千米?
小明骑车上学,原计划每分钟行200米,正好准时到达学校,有一天因下雨,他每分钟只能行120米,结果迟到了5分钟。他家离学校有多远?
加工一批零件,原计划每天加工80个,正好按期完成任务。由于改进了生产技术,实际每天加工100个,这样,不仅提前4天完成加工任务,而且还多加工了100个。他们实际加工零件多少个?
甲、乙二人加工一批帽子,甲每天比乙多加工10个。途中乙因事休息了5天,20天后,甲加工的帽子正好是乙加工的`2倍,这时两人各加工帽子多少个?
甲、乙两车同时从A、B两地相对开出,甲车每小时比乙车多行20千米。途中乙因修车用了2小时,6小时后甲车到达两地中点,而乙车才行了甲车所行路程的一半。A、B两地相距多少千米?
甲、乙两人承包一项工程,共得工资1120元。已知甲工作了10天,乙工作了12天,且甲5天的工资和乙4天的工资同样多。求甲、乙每天各分得工资多少元?
用汽车运一堆煤,原计划8小时运完。实际每小时比原计划多运吨,这样运了6小时就比原计划多运了3吨。原计划8小时运多少吨煤?
11、水结成冰时,体积增加1/10,当冰融成水后,体积要减少几分之几?
12、某商店同时卖出两件商品,每件各得30元,其中一件赚20%,另一件亏本20%,这个商店卖出这两件商品是赚钱还是亏本?
13、某处摆着甲、乙两盆花,一群蜜蜂飞来,在甲花上落了1/4,在乙花上落了1/3。假如这群蜜蜂中再有两盆花上蜜蜂之差的3倍的蜜蜂落在花上,则剩下2只蜜蜂,这群蜜蜂共有多少只?
14、小牛乘汽车从县城到省城需2天,他第一天走了全程的1/2又72千米,第二天走的路程等于第一天的1/2,求县城到省城的距离。
15、光明中学七年级有学生360人,其中女生占7/12,后来又转来了几名女生,这样女生占七年级总人数的60%,转来的女生有多少人?
16、甲乙两个养猪专业户共养猪20XX头,如果甲卖掉他原有猪的1/4,已卖掉110头,则甲、乙两户剩余的猪的头数相等,甲两户原来积各养猪多少头?
17、人民机械厂加工一批零件,甲车间加工这批零件的20%,乙车间加工余下的25%,丙车间加工再余下的40%,还剩下3600个没加工,这批零件共有多少个?
18、庆丰文具店运来的毛笔比钢笔多1万支,其中毛笔的3/7与钢笔的1/2支数相同,庆丰文具店共运来多少万支笔?
19、四个孩子合买一只60元的小船。第一个孩子付的钱是其他孩子付的总钱数的一半,第二个孩子付的钱是其他孩子付的总钱数的三分之一,第三个孩子付的.钱是其他孩子付的总钱数的四分之一,第四个孩子付多少钱?
20、煤气收款员到一幢楼里收煤气差价款,他走出楼时一算,没交款的户数占已交款户数的1/8。如果少收2户,则没交款的户数恰好占已交款户数的1/6,这幢楼有多少住户?
21、打一份书稿,甲独打需30天,乙单独打需20天。甲、乙合打若干天后,甲停工休息,乙继续打了5天完成。甲打了多少天?
22、修一条路,甲队单独修20天可以修完,乙队单独修25天可以修完。现在两队合修,中途甲队休息3天,乙队休息若干天,这样一共用了15天才修完。乙队休息了几天?
23、搬运一个汽车的货物,甲需12天,乙需15天,丙需20天。有同样的装货汽车M和N,甲搬运M汽车的货物,乙同时搬运N汽车的货物。丙开始帮助甲搬运,中途又去帮助乙去搬运,最后同时搬完两个汽车的"货物。丙帮助甲搬运了几小时?
24、一项工作,如果单独做,小张需10天完工,小李需12天完工,小王需15天完工。现在三人合作,中途小张先休息了1天,小李再休息3天,而小王一直工作到完工为止。这样一共用了几天时间?
25、甲、乙合做一项工程,20天完成。如果甲队做7天,乙队做5天,只能完成工程的1/3,两队单独做完任务各需多少天?
26、一件工作,甲先独做3天,然后与乙合做5天,这样才完成全工程的一半。已知甲、乙工作效率的比是3:4。如果由乙单独做,需要多少天才能完成?
27、某车间生产甲、乙两种零件。生产的甲种零件比乙种零件多12个,乙种零件全部合格,甲种零件只有4/5合格,两种零件合格的一共是42个,两种零件共生产多少个?
28、某车间两个生产小组计划生产680个零件,实际两个小组共生产了798个零件,甲组生产的零件数比本组的任务多生产了1/5,乙组生产的零件仅比本组任务多生产3/20,两个小组原来的任务各是多少个?
29、把105升水注入甲、乙两个容器,可注满甲容器及乙容器的1/2,或可注满乙容器及甲容器的1/3,每个容器的容量各是多少?
30、有三堆棋子,每堆棋子一样多,并且都只有黑白两种棋子。第一堆里的黑子数与第二堆里的白子数一样多,第三堆里的黑子为全部黑子的2/5。把三堆棋子集中在一起,白子为全部棋子的几分之几?
奥数应用题 第5篇
1、学校有一批树苗,交给若干名少先队员去栽,一次一次往下分,每次分一棵,最后剩下12棵不够分;如果再拿来8棵树苗,那么每个少先队员正好栽10棵。问参加栽树的少先队员有多少人?原有树苗多少棵?
2、小明一元钱买了5支铅笔和8块橡皮,余下的钱,如果买1支铅笔就不足2分,如果买一块橡皮就多出1分,每支铅笔多少分?每块橡皮多少分?
3、四(1)班同学植树,每人植1棵还剩20棵,每人植2棵差30棵。有多少个同学?多少棵树苗?
4、学雷锋小组为学校搬砖。如果每人搬18块,还剩2块;如果每人搬20块,就有一位同学没砖可搬。问共有多少块砖?
5、老师把一些苹果分给小朋友。如果每人分一个,还剩下8个苹果;如果每人分2个,那么还少2个苹果。一共有多少个小朋友?
6、三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩17块;
如果每人搬7块,则少10块砖.这个班少先队有几个人?要搬的砖共有多少块?
7、学校为新生分配宿舍.如果每个房间住3人,则多出22人;
如果每个房间多住5人,则空1个房间.问宿舍有多少间?新生有多少人?
8、妈妈买来一篮橘子分给全家人,如果其中两人分4个,其余人每人分2个,则多出4个;
如果其中一人分6个,其余人每人分4个,则缺少12个,妈妈买来橘子多少个?全家共有多少人?