正兴文秘网为您提供优质参考范文! 工作汇报 思想汇报 发言稿 主题教育 教案设计 对照材料
当前位置:首页 > 范文大全 > 公文范文 >

六年级数学上册教学设计范本6篇

时间:2024-06-09 12:00:04 来源:网友投稿

六年级数学上册教学设计范文第1篇教材分析1、本节课是在学习了折扣和纳税之后的第三个用百分数解决问题的知识点,是用百分数解决问题中最重要的问题,也是本章内容中的一个难点。2、本节课的主要内容是让学生了解下面是小编为大家整理的六年级数学上册教学设计范本6篇,供大家参考。

六年级数学上册教学设计范本6篇

六年级数学上册教学设计范文 第1篇

教材分析

1、本节课是在学习了折扣和纳税之后的第三个用百分数解决问题的知识点,是用百分数解决问题中最重要的问题,也是本章内容中的一个难点。

2、本节课的主要内容是让学生了解“本金”“利息”“利率”的意义,掌握利息的计算方法以及利率在生活实际中的应用。

学情分析

1、本节课是在学生学习了折扣和纳税这两个用百分数解决问题的基础上将要学习的第三个用百分数解决问题的知识点。

2、学生在学习这个知识点时的障碍点应该在于利息税的扣除和国债利息不扣除利息税上。

教学目标

1、通过教学使学生知道储蓄的意义:明确本金、利息、税后利息和利率的含义;
掌握计算利息的方法,会进行简单的计算。

2、对学生进行勤俭节约,积极参加储蓄,支援国家、灾区、贫困地区建设的思想品德教育。

教学重点和难点

重点:掌握利息的计算方法。

难点:1、通过自主探索,了解利息的计算方法;

2、利息税的扣除和国债利息不扣除利息税上。

教学过程:

一、课内交流、探究

师:在储蓄的过程中,你搜集到哪些相关的`知识?(学生分组汇报调查结果)

(生汇报。开放的问题情景下,根据每组学生的差异,预计可能出现下列情况:(1)有关储蓄的一般知识,如储蓄的方式;
(2)有关储蓄的相关概念,如本金、利息、利率、税后利息税的知识;
(3)有关利息的计算方法,如有的小组利率的含义推导出利息的计算方法;
(4)、有关调查中遇到的困难、解决的方法和自己的感受)

师:根据每组交流的情况给予相应的评价,并和学生共同整理储蓄的相关知识,形成知识体系。

板书:利息与本金的比值叫做利率。

利息=本金×利率×时间

二、创设情景、体验储蓄

1、创设情景

2、体验储蓄。根据刚才的汇报情况,安排教学过程。

(1)学生拿出复制好的储蓄存款凭证进行填写。

(2)学生活动,教师了解学生填写情况后,最后利用投影仪进行订正。

(3)、充分联系生活,设置储蓄密码。

(4)保管好存折或存单。

师:储蓄完成以后,银行要给我们一个存单或存折,我们要牢记密码,妥善保管好存单或存折。

三、运用知识、解决问题

1、交流讨论,了解利息的计算方法。

师:同学们,根据刚才的知识,如果告诉你两年的利率是2.43%,你能够求出张大爷储蓄到期时能获得多少利息吗?(学生分组讨论计算,汇报情况)

2、学习利息税知识。

师:大家都算出了应得的利息,但实际上张大爷他并不能得到你们算出的这些钱,你们知道为什么吗?请大家看一下课本第99页最下面的一句话:“国家规定,存款的利息要按5%的税率纳税。”哪位同学能解释一下?

生:就是银行多给的那部分钱的5%要上交给国家。

生:就是只能得到利息的95%。

师:对,存款的利息必须要按5%的利率纳税,纳税是我们每一个公民应尽的义务,在座的各位同学长大之后都要依法进行纳税。

师:储蓄到期时,张大爷实际领取本金和利息一共是多少?

生1:48.60×5%=2.43(元)

1000+48.60-2.43=1046.17(元)

生2:48.60×(1-5%)=46.17(元)

1000+46.17=1046.17(元)

生3:1000+48.60×(1-5%)=1046.17(元)

师总结利息的利息计算方法。

3、巩固新知:学生进行练习(教材第100页的“做一做”)

(1)学生个人独立思考解决问题。

(2)学生个人汇报

四、课后实践、体验储蓄过程

师:请同学们课后把平时积攒的零用钱存入银行,在储蓄的过程中如果遇到问题,你能想办法解决吗?把不懂的问题记下来,我们下节课继续交流讨论。

五、课后作业布置

课本练习二十三的第6、9题。

六年级数学上册教学设计范文 第2篇

教材分析:

这部分内容是求一个数是另一个数的百分之几的应用题的发展。它是在求比一个数多(少)几分之几的.分数应用题的基础上进行教学的。这种题实际上还是求一个数是另一个数的百分之几的题,只是有一个数题目里没有直接给出来,需要根据题里的条件先算出来。通过解答比一个数多(少)百分之几的应用题,可以加深学生对百分数的认识,提高百分数应用题的解题能力。

学情分析:

用线段图表示题目的数量关系有助于学生理解题意,分析数量关系。再通过想帮助学生弄清,要求实际造林比原计划多百分之几,就是求多造林的公顷数是原计划造林公顷数的百分之几。然后鼓励学生寻找不同的解决方法,这样既开拓了学生的解题思路,又可以发展学生的思维能力。不断的改变题中的问题,使学生进一步加深对这类百分数应用题的认识,看到题里条件和问题之间的内在联系,同时也促进了学生逻辑思维能力的发展。

教学目标:

1、认识求比一个数多(少)百分之几的应用题的结构特点。

2、理解和掌握这类应用题的数量关系、解题思路和解题方法。

教学重点:掌握求比一个数多(少)百分之几的应用题的解题方法,正确解答。

教学难点:理解这类应用题的数量关系、解题思路和解题方法。

教具准备:

小黑板

教学过程:

第一课时

活动(一)铺垫复习。

1、说出下面各题中表示单位1的量,并列出数量关系式。

(1)男生人数占总人数的百分之几?

(2)故事书的本数相当于连环画本数的百分之几?

(3)实际产量是计划产量的百分之几?

(4)水稻播种的公顷数是小麦的百分之几?

2、只列式,不计算。

(1)140吨是60吨的百分之几?

(2)260吨是40吨的百分之几?

3、一个乡去年原计划造林12公顷,实际造林14公顷。实际造林是原计划的百分之几?

活动(二)相互合作,探究问题:

1、根据复习题第3题的题意,除了可以求实际造林是原计划的百分之几?还可以提什么问题?出示例3。一个乡去年原计划造林12公顷,实际造林14公顷。实际造林比原计划多百分之几?

2、讨论:

(1)这道题与上面的复习题相比较,相同的地方是什么?不同的地方是什么?

(2)根据线段图,这道题应该怎样思考、解答?

列式解答:

(14-12)12=2120.167=16.7%

答:实际造林比原计划多16.7%。

3、学生阅读课本,对照例3的解答,质疑问难。

4、想一想,例3还有其他解法吗?

可能出现1412-100%116.7%-100%=16.7%

5、思考:如果例3中的问题改成:原计划造林比实际造林少百分之几?该怎样解答?

(例3中的问题改成原计划造林比实际造林少百分之几后,单位1的量发生变化。改编后的应用题应把实际造林的公顷数(14公顷)看做单位1的量,要比较的量是原计划造林比实际造林少的公顷数。)

解答过程:

(14-12)14或者:1-1214

=2141-0.857

0.143=1-85.7%

=14.3%=14.3%

答:原计划造林比实际造林少14.3%。

活动(三)、巩固练习

1、分析下列问题,指出所求问题是什么量与什么量比,把哪一个量看做单位1。

(1)今年比去年增产百分之几?

(2)男生比女生少百分之几?

(3)一种商品,降价了百分之几?

(4)客车速度比货车慢百分之几?

(5)货车速度比客车快百分之几?

2、判断题。(对的在括号里打,错的打。)

(1)客车每秒行的路程比货车多1.2米,那么,货车每秒行的路程比客车少1.2米。

(2)客车每秒行的路程比货车多10%,那么,货车每秒行的路程比客车少10%。

六年级数学上册教学设计范文 第3篇

教学目标:

1、在具体的情境中理解比的意义,学会比的读法、写法,掌握比的各部分名称及求比值的方法。

2、经历探索比与分数、除法之间关系的过程,体会数学知识之间的内在联系,把握比的意义的本质。

3、在自主学习中,积累数学活动经验,培养学生分析、概括的能力,感受数学学习的乐趣。

教学重点:理解比的意义以及比与分数、除法之间的关系。

教学难点:理解比与分数、除法之间的关系,明确比与比值的区别。

教学准备:课件,学具。

教学过程:

一、创设情境,揭示课题

1、课件出示:2003年10月15日,我国第一艘载人飞船“神舟”五号顺利升空。在太空中,执行此次任务的航天员杨利伟在飞船里向人们展示了联合国旗和中华人民共和国国旗。

教师提问:这就是杨利伟展示的两面旗,它们的长都是15cm,宽都是10cm。比较它们长和宽的关系,你能提出怎样的数学问题?

预设情况:

(1)长比宽多多少厘米?15-10;

(2)宽比长少多少厘米?15-10;

(3)长是宽的多少倍?15÷10;

(4)宽是长的几分之几?10÷15。

2、揭题:今天我们将进一步研究这种倍数关系,它除了用除法表示外,还可以用一种新的数学方法──“比”来表示。(板书课题:比的意义)

【设计意图】利用“神舟”五号升空这一现实素材自然地引出“比”,一方面激发学生的学习兴趣,感受数学与生活的密切联系;另一方面可适时对学生进行爱国主义教育。

二、探究新知,理解比的意义

(一)同类量的比

师:刚才我们用“15÷10”表示长是宽的多少倍,可以说成长和宽的比是15比10,记作15:10。那么,10÷15表示宽是长的几分之几,怎样用比表示它们的关系呢?(可以说成宽和长的比是10比15,记作10:15。)

师:想一想15比10和10比15一样吗?它们有什么不同?(引导学生理解比的前项、后项所表示的意义不同。)

(二)不同类量的比

课件出示:“神舟”五号进入运行轨道后,在距地350km的高空作圆周运动,平均90分钟绕地球一周,大约运行42252km。那么飞船进入轨道后平均每分钟飞行多少千米?

1、读题理解题意,说说知道了哪些信息?

2、独立解答,说清解题思路。(速度可以用“路程÷时间”表示。)

3、尝试用比表示路程和时间的关系。(路程和时间的比是42252比90,记作42252:90。)

(三)比较分析

1、观察比较。

师:观察这三个比,说说它们有什么联系与区别?(引导学生发现这三个比都表示相除的关系,但前两个比中两个量都表示长度,相比的两个量是同类量;第三个比中的两个量,一个表示路程,一个表示时间,是不同类量,不同类量的比可以表示一个新的量。)

师:想一想,路程与时间的比可以表示哪个量?(速度)

2、归纳:什么叫比?(板书:两个数的比表示两个数相除。)

【设计意图】在比较分析中让学生进一步感受“比”和除法的联系,加深对同类量与不同类量比的意义的理解,对比的概念形成较为清晰的认识。

三、自主学习,加深认识

(一)深化理解

1、自学比的相关知识。

学生自学教材第49页“做一做”之前的内容,思考以下问题:比各部分的名称是什么?怎样求一个比的比值?

2、汇报交流。

(1)比各部分的名称。

课件出示:15:10=15÷10=

,让学生说出比的各部分名称。(板书:前项、比号、后项、比值。)

(2)比值的意义。

师:怎样求一个比的比值呢?(比的前项除以比的后项所得的商就是比值。)

(3)练习:求出下列各比的比值:

3:5;0、4:0、16;

:8。

师:比和比值有什么区别?(引导学生小结:比表示一种关系,而比值是一个数,通常用分数表示,也可以用小数或整数表示。)

【设计意图】自主学习也是学生探索问题、解决问题的重要途径。教师把学习的主动权交给学生,引导学生在抽象概括出比的意义的基础上自主学习比的相关知识,促进学生自主探究能力的发展。

(二)沟通联系

1、师:同桌讨论一下,比与除法、分数之间有什么联系?比的前项、后项和比值分别相当于分数和除法算式中的什么?比的后项可以是0吗?

讨论后根据学生交流反馈填写下表:

联系

区别

前项

:(比号)

后项

比值

一种关系

除法

被除数

÷(除号)

除数

一种运算

分数

分子

—(分数线)

分母

分数值

一个数

2、请尝试用字母表示比和除法、分数之间的内在联系。

板书:。

师:根据分数与除法的关系,两个数的比还可以写成分数形式。如15:10也可以写成,仍读作“15比10”。

3、师:足球比赛中的比分3:0与我们今天学习的比一样吗?(引导学生理解:各类比赛中的比不是我们这节课学习的比,它只是一种计分形式,是比较大小的,是相差关系,不是相除关系。)

【设计意图】在讨论交流中,教师引导学生进一步认识比和除法、分数之间的联系与区别,体会数学知识间的内在联系。

四、巩固知识,应用拓展

1、P49“做一做”第1题。

(1)出示课件,让学生根据条件和要求写出比并求出比值。反馈交流时,让学生说说两个相比的量是同类量吗?并说说有什么发现?(发现是同类量的比,这两个比的比值相等。)

(2)提问:小敏所花的钱数和练习本数之比是():(),比值是()。

请学生思考这两个比的量是同类量吗?比值表示什么意思?(所花钱数和练习本数是不同类的量,比值表示单价。)

【设计意图】结合具体情境帮助学生巩固比的概念,为以后学习比例打下基础。

2、P49“做一做”第2题。

学生独立完成。反馈时,说说未知的前项或后项是怎样求出的。(引导学生根据比与除法的关系求出未知的前项或后项,归纳一般方法:前项=比值×后项;后项=前项÷比值。)

【设计意图】通过练习,引导学生进一步理解比和除法的关系,学会灵活运用所学知识解决实际问题。

3、练习十一第1题。

(1)请学生独立完成,反馈交流时引导学生明确比的前项、后项是有顺序的,前项、后项所表示的量与数据之间必须一一对应;第(3)题请学生说说比值的具体含义是什么。(表示平均每人制作的模型数量。)

(2)提问:你还可以写出哪几个比?说出它们的具体含义。(引导学生说出多个量的比。)

【设计意图】在具体情境中,教师充分挖掘习题资源,引导学生从量与量的关系这一角度去认识比,明确两个量(多个量)的比表示的是它们之间的倍数关系,进一步加深对比的意义的理解,深化对比的认识。

五、回顾总结,交流收获

师:说说这节课我们学习了什么?你有什么收获或问题?

【设计意图】通过回顾,理顺各个知识点,让学生明确学习了什么内容,反思自己知识掌握情况。

六年级数学上册教学设计范文 第4篇

教学目标

使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答基本的分数除法应用题。

进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

教学重难点

分数除法应用题的特点及解题思路和解题方法。

教学准备

教学过程设计

教学内容

师生活动

一、 复习引新

二、教学新课

三、巩固练习

四、课堂小结

五、作业

1、先说出单位1,再说出数量关系式

(见课件)

2、做43页复习题

问:这道题怎样想?

3、引入新课

解答分数应用题,要先确定单位1,再找出题目中的数量关系式,然后列式。这节课就继续按照这样的思路来学习分数应用题。

1、教学例1

(1)出示例1,学生读题,说明条件和问题。

问:关键句是哪一句?谁占果树总棵数的2/5?

单位1是谁?

(2)让学生画出线段图

(3)学生独立列式解答。

(4)讨论:哪种方法比较简单?

指出:求单位1的应用题一般来说用方程解。

2、比较解法

请同学们比较例1和复习题。

问:在条件、问题上有什么相同点和不同点?

在解法上有什么相同点和不同点?

小结:解答分数应用题,要先确定单位1,再找出题目的数量关系再解答。

1、做练一练

让学生先写出数量关系式再解答。

2、做练习十第4题

问:要怎样想?根据什么来列方程?

今天学了什么?解答此类应用题要怎样思考、分析?

练习十第2、3题

课后感受

本节课的内容比较简单,学生有一定的基础,所以花一定的时间让学生画线段图,让学生提高解题的能力,这对学习较复杂应用题有一定的帮助!

六年级数学上册教学设计范文 第5篇

教材简析:

这部分内容是在学生学过分数与除法的关系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行教学的。比的概念实质是对两个数量进行比较表示两个数量间的倍比关系。任何相关的两个数量的比都可以抽象为两个数的比,既有同类量的比,又有不同类量的比。教材还介绍了每个比中两项的名称和比值的概念,举例说明比值的求法,以及比和除法、分数的关系,着重说明两点:

(1)比值的表示法,通常用分数表示,也可以用小数表示,有的是用整数表示。

(2)比的后项不能是0。

教学内容:

苏教版九年义务教育六年制小学数学第十一册第52~53页比的意义。

教学对象分析:

学生是在学过分数与除法的关系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行学习的。高年级学生具有一定的阅读、理解能力和自学能力,所以在教学时,可组织学生以小组为单位进行研究、探索、讨论、总结,培养学生的创新意识和自主学习能力。

教学目标:

1、理解并掌握比的意义,会正确读写比。

2、记住比各部分的名称,并会正确求比值。

3、理解并灵活掌握比与分数、除法之间的联系,明确比的后项不能是零的道理,同时懂得事物之间是相互联系的。

4、通过主动发现的小组合作学习,激发合作意识,培养比较、分析、抽象、概括和自主学习的能力。

5、养成认真观察、积极思考的良好学习习惯。

教学重点:

理解和运用比的意义及比与除法、分数的联系。

教学难点:

理解比的意义。

教学媒体:

电脑课件、实物投影

教学过程:

一、创设情景,激发兴趣

1、引入:同学们,2008年的北京将要举办什么盛会啊?(北京奥运会),在上届的雅典奥运会上中国代表团取得了非常好的成绩,那么关于奥运会你都知道些什么呢?(学生可以畅所欲言),(播放奥运会的相关资料)在学生说出的资料中选出中国金牌数和俄罗斯金牌数:中国获得金牌32块。俄罗斯27块。

你能列出算式表示中国与俄罗斯所得金牌块数之间的关系吗?(这里可能有学生列加减法,也可能会有除法。选出除法算式分析)

32÷27表示什么意思?(中国得的金牌是俄罗斯的几倍)

27÷32表示什么意思?(俄罗斯得的金牌是的中国的几分之几)

2、联系奥运,分析题目.

在奥运会上,你认为我国的哪块金牌的分量最重?(学生畅所欲言)如果没有人说刘翔,教师就稍微引一下

新科110米栏奥运冠军刘翔用沉甸甸的金牌让轻视黄种人的人闭上了嘴巴,他为中国夺得了有史以来中国在田径短跑项目上的第一块金牌,下面我们就共同回顾一下刘翔的夺冠历程(播放刘翔夺冠视频)。

看了这一段内容我们都非常的激动,为我们是中国人而感到骄傲和自豪。那你知道刘翔的夺冠成绩是多少吗?(12、91)

那你知道他的速度到底有多快吗?

如果我要你们列式来求该怎么求呢?(110÷12、91)你是根据什么来列式的?(路程÷时间=速度)

看完奥运,我们再来看看我们学校的事情

3、先来做一个小游戏:请栾人璇你们这组同学起立。请其他同学数数他们组女生几人,男生几人?你能用什么式子表示他们组女生人数和男生人数之间的关系?(4÷3和3÷4,分别问学生这两个算式分别表示什么意思?)比的意义教学设计相关内容:分数除法(第5课时)六(下)第一单元比较正数和负数的大小圆柱的表面积练习题分数除法的意义和分数除以整数稍复杂的求一个数的几分之几是多少的应用题《折扣》教案六上综合应用:确定起跑线分数应用题的整理和复习查看更多>>小学六年级数学教案

4、学校用150元买来3个小足球,每个小足球多少元?

(请学生自己读题,说说每道题求的是什么?数量关系是什么?怎样列式?

学生读题回答,教师板书(总价÷数量=单价150÷3)

3、揭示课题:这些题都是用除法算式来表示两种数量的关系的,在日常生活、生产和实验中,常常要对两种数量进行比较,今天我们就来学习一种新的对两个数量进行比较的方法——比。(板书:比)研究比的意义。(板书完整课题)

[设计意图:问题情境的创设主要立足于学生的现实生活,贴近学生的认知背景,设计形象而又蕴含一定的与数学问题有关的情境,在开放性问题情境中,学生思维活跃,并积极主动地从多角度去思考问题,变“让我学”为“我要学”。]

二、自主探究,合作交流

1、比的意义。

(1)那么在刚才的例子当中中国得的金牌是俄罗斯的几倍,用32÷27,现在我们就可以说成中国得的金牌与俄罗斯得的金牌数的比是32比27。

那俄罗斯得的金牌是的中国的几分之几可以怎么说呢?(学生试着说:俄罗斯得的金牌数和中国得的金牌数的比是27比32)

(2)小结:通过以上的学习后,我们知道,谁是谁的几倍或谁是谁的几分之几,又可以说成谁和谁的比。

质疑:可老师还有个疑问,以上两道题都是对中国得的金牌数和俄罗斯得的金牌数进行比较的,为什么一个是32比27,一个是27比32?

引导得出:两个数量进行比较要弄清谁和谁比,谁在前,谁在后,不能颠倒位置,否则,比表示的具体意义就变了。

(2)同学们真聪明,那么你们能像这样把其他的除法算式都变一个说法吗?先同座位两个人互相说说看。(学生同座位两个人说)

都说完了,那谁愿意站起来说一说呢?

(女生人数是男生人数的几倍可以说成女生人数和男生人数的比是4比3)就这样依次说完。

那路程除以时间等于速度可以怎么说啊?(速度可以说成是路程与时间的比)

那单价呢?可以怎么说啊?(单价是总价和数量的比)

在我们常用的数量关系中还有工作效率=工作总量÷工作时间

这里的工作效率还可以怎么说呢?(工作效率就是工作总量个工作时间的比)

[设计意图:考虑到学生对“比”缺乏感性上认知,所以以上的例子采用“导、拨”的方法,引导学生明确:对两个数量进行比较,可以用除法,也可以用比的方法,即谁是谁的几分之倍或几分之几,又可以说成谁和谁的比。既节省了教学时间,也使学生初步理解了比的意义,充分发挥了教师的引导作用。]

(3)从上面的例子可以看出,对两个数量进行比较,既可以用除法,又可以用比的方法。那什么叫做比呢?请同学们结合板书同位讨论一下。(前后四人讨论)

汇报,板书:两个数相除又叫做两个数的比。(齐读)

你们能不能自己举一个用比表示两数关系的例子?先说原题再把它改编成比的形式(学生自主举例,四人讨论汇报,教师板书)

[设计意图:通过以上例子的学习,使学生由形象感知过渡到建立表象的层面。遵循儿童的认知规律,用同桌之间互相讨论的方式,抽象概括出“比的意义”,同时充分发挥了学生的主体作用。]

(4)练习题:填空。

有5个红球和10个白球,白球和红球个数的比是()比(),红球和白球个数的比是()比()。比的意义教学设计相关内容:分数除法(第5课时)六(下)第一单元比较正数和负数的大小圆柱的表面积练习题分数除法的意义和分数除以整数稍复杂的求一个数的几分之几是多少的应用题《折扣》教案六上综合应用:确定起跑线分数应用题的整理和复习查看更多>>小学六年级数学教案

[设计意图:这是一组对应练习,旨在强化学生对比的意义的初步理解。]

2、比的读写法、各部分名称、求比值的方法以及与除法、分数的联系。

(1)看书自学,小组讨论交流:通过刚才的学习,我们理解了比的意义,在课本的52~53页还涉及到一些关于“比”的其他知识,你们想自己研究、探索吗?老师有个小小的要求,请大家以四人小组为单位进行自学,可以在小组里讨论,然后汇报一下你学会了什么?还有什么疑问?开始吧!

[设计意图:自学课本也是学生探索问题,解决问题的重要途径。根据高年级学生的阅读、理解能力,结合教材的具体内容,充分相信学生,组织学生以小组为单位进行研究、探索、讨论、总结,有利于培养学生的创新意识和实践能力,有利于学生思维发展,有利于培养学生间的合作精神。]

(2)汇报。

1:我学会了比的写法,3比4记作3∶4。(让学生板演)

问:这个“∶”叫做什么呢?谁愿意给它起个名字?(强调:写“∶”应该注意上下对齐,点要圆一点,它不同于冒号。)那么4比3、110比12、51又记作什么?(指名板演,其他同学写在练习本上)3∶44∶3110∶12、91又怎样读呢?

思考:刚才大家学会了用“∶”的形式来写出两个数的比,除了这种形式,还可以写成什么形式呢?(指名板演)读作什么?还可以读作二分之三吗?为什么?(把3∶4改写成分数形式的比,并齐读。)

[设计意图:教材无非是个例子,站在培养学生创新意识的高度重新组合处理教材内容。学生汇报过程中,由教师引导,把“比号”“分数形式的比”前移,这样既符合学生的认知规律,又使课堂教学省时高效。]

2:我学会了比的各部分名称。(结合3∶4来说明)

如果告诉你“男生人数和女生人数的比是3:4”,你能想到些什么?(学生畅所欲言)

3:我学会了什么叫做比值。(比的前项除以后项所得的商叫做比值)

问:那么怎样求比值呢?(前项除以后项的商)

练习题:(课件出示)求出下面各比的比值。3∶40、7∶0、358∶40、2∶1/5

想:比值通常可以是什么数?

[设计意图:比值不同的四个比的举例,既加深了学生对比值意义的理解,又强化了学生对“比”和“比值”的区别。]

4:两数相除又叫做两个数比,看来比和除法之间有着一定的联

系,我们以前也学习过除法和分数的联系,那么比和分数之间是不是也有联系呢?(是)。

出示思考题:比与除法、分数有哪些联系?比与除法、分数又有什么区别?(以前后四人为小组,讨论填写)

相互关系区别比前项:(比号)后项比值一种关系除法被除数÷(除号)除数商一种运算分数分子—(分数线)分母分数值一种数

设计意图:以往教学比与除法、分数三者的联系,主要以教师的讲授为主,费时费力,教学效果也不是最佳的。所以要突破传统的教学模式,不讲授,让学生借助教材、板书、计算机课件的有机结合,总结出三者之间的联系,实现了自主学习。

5:我还知道比的后项不能为“0”。

问:为什么呢?(引导学生从不同角度说明)

三、多层练习,巩固新知

六年级数学上册教学设计范文 第6篇

教学内容:

义务教育课程标准试验教科书青岛版小学数学六年级上册第73—78页。

教材简析:

教材在学生已经掌握了求一个数的几分之几是多少的一步和两步计算的分数应用题的基础上,呈现了中国的世界遗产这一情景。通过介绍中国的世界遗产情况,引导学生提出问题,引入对乘加应用题的探索。知识点是让学生在具体情景中,借助一、二单元的知识基础,运用已有的知识经验,自己探索出分数四则混合运算的计算规律,并能灵活的运用这个规律解决问题。重点是将四则混合运算规律正确地迁移到分数中。

教学目标:

1、知识目标:在具体情景中,能正确描述数量关系,画线段图,并根据数量关系和线段图列出算式并正确解答乘加、乘减分数应用题,在不断探索中领悟分数四则混合运算的规律。

2、能力目标:通过让学生说一说、画一画,培养学生的分析能力、概括能力、综合能力,培养学生的探究意识。

3、情感目标:创设平等和谐、积极向上的学习氛围,培养学生的合作意识,感受数学与生活的密切联系,提高学习数学的兴趣。

教学过程:

一、创设情境,谈话导入。

谈话:同学们,08的奥运会相信大家一定记忆犹新,世界人民走进奥运,走进了北京。作为一名中国人,你能说说北京有哪些历史文化遗产吗?

[设计意图]这一单元是围绕“中国的世界遗产”这个大的情境串进行的,而本课是分数四则混合运算的第1个信息窗,情境内容将中国放入世界这一大环境中,因此由奥运会的话题引出了本课情境,这样设计让学生自然而然地进入了本课,激发了学习兴趣。

二、自主探究,获取新知。

1.课件出示教科书73页情境

谈话:这里有一些我国世界遗产的文字信息,谁能读一读?根据文字信息你能提出什么数学问题?

(1)北京故宫的占地面积大约是多少公顷?

(2)我国的世界文化遗产和自然遗产一共有多少处?

(3)我国的世界文化遗产比自然遗产多多少处?………

(4)同学们提出了这么多问题,我们先来解决“北京故宫的占地面积大约是多少公顷?”好吗?

2.根据以往的解题经验,我们可以用什么方法帮助你解决这一问题?

[设计意图]让学生在自己提出问题的基础上,动脑思考解决问题的办法,梳理已有的数学思想方法,为新问题的解决做好铺垫。

3.选择你喜欢的方法试着独立解决这一问题好吗?

4.学生汇报交流。

让学生到前面展示不同的方法,分别说说自己的解题思路。

(1)272×1/4=68(公顷) 68+4=72(公顷)

(2)272×1/4+4

=68+4

=72(公顷)

学生在多次交流解题步骤中,教师板书数量关系

天坛公园的面积×1/4+比天坛公园多的面积=故宫的面积

并展示学生画的线段图。让学生分析线段图。

[设计意图]学生是探究主体,教师是引导者。在这里把让学生说解题思路放在首位,突出重点,突破难点。

5.刚才同学们有的用分步,有的列综合算式解决了第一个问题,现在你能试着用先画线段图再列综合算式的方法自己解决你们提出的“我国的世界文化遗产和自然遗产一共有多少处?”吗?

学生独立解决。(根据学生情况,如果画图有困难,可让学生小组内讨论一下,在这里把谁看作单位“1”?)

全班交流,展示做题方法。

(1)30×7/10+30×2/15 (2)30×(7/10+2/15)

=21+4 =30×25/30

=25(处) =25(处)

6.让学生展示线段图的画法,说清解题思路。

7.点题并板书:分数应用题。

8.单看这两个算式的计算,你能想到什么运算律?有什么启发?

9.小结:乘法的分配律在分数中同样适用。

[设计意图]让学生借助两种解题方法,将分数与整数的运算率沟通,为后面的练习搭建了平台。

三、巩固练习,加深理解。

独立完成(第75页第2、3题。)

指生回答,并说出解题思路。

(重点说出数量关系。)

[设计意图]这两道题是针对性练习,旨在巩固所学知识。数量关系要让学生反复说,目的是让学生从理论上加以理解。

四、回归实践,拓展运用。

课件再次出示本课信息窗情境图。

谈话:现在你能自己解决“我国的世界文化遗产比自然遗产多多少处?”吗?

现在让我们走进民族文化遗产——青藏高原,检验一下这节课你的学习情况。

课本76页第9题。学生读题,指生列式。

[设计意图]引导学生回归课题情景,联系生活实际,学以致用,灵活掌握解题方法。

五、谈收获。

这节课你有什么收获?

推荐访问:上册 范本 教学设计 六年级数学上册教学设计范本6篇 六年级数学上册教学设计范文(通用6篇) 小学六年级数学上册教学设计